Assignment4: PUC Assignment 4
module Assignment4 where
YOUR NAME AND EMAIL GOES HERE
Introduction
You must do all the exercises labelled “(recommended)”.
Exercises labelled “(stretch)” are there to provide an extra challenge. You don’t need to do all of these, but should attempt at least a few.
Exercises without a label are optional, and may be done if you want some extra practice.
Please ensure your files execute correctly under Agda!
IMPORTANT For ease of marking, when modifying the given code please write
-- begin
-- end
before and after code you add, to indicate your changes.
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.String using (String; _≟_) open import Relation.Nullary using (¬_; Dec; yes; no)
DeBruijn
module DeBruijn where
Remember to indent all code by two spaces.
open import plfa.part2.DeBruijn
Exercise (mul
) (recommended)
Write out the definition of a lambda term that multiplies two natural numbers, now adapted to the inherently typed DeBruijn representation.
Exercise V¬—→
Following the previous development, show values do not reduce, and its corollary, terms that reduce are not values.
Exercise mul-example
(recommended)
Using the evaluator, confirm that two times two is four.
More
module More where
Remember to indent all code by two spaces.
Syntax
infix 4 _⊢_ infix 4 _∋_ infixl 5 _,_ infixr 7 _⇒_ infixr 8 _`⊎_ infixr 9 _`×_ infix 5 ƛ_ infix 5 μ_ infixl 7 _·_ infixl 8 _`*_ infix 8 `suc_ infix 9 `_ infix 9 S_ infix 9 #_
Types
data Type : Set where `ℕ : Type _⇒_ : Type → Type → Type Nat : Type _`×_ : Type → Type → Type _`⊎_ : Type → Type → Type `⊤ : Type `⊥ : Type `List : Type → Type
Contexts
data Context : Set where ∅ : Context _,_ : Context → Type → Context
Variables and the lookup judgment
data _∋_ : Context → Type → Set where Z : ∀ {Γ A} --------- → Γ , A ∋ A S_ : ∀ {Γ A B} → Γ ∋ B --------- → Γ , A ∋ B
Terms and the typing judgment
data _⊢_ : Context → Type → Set where -- variables `_ : ∀ {Γ A} → Γ ∋ A ----- → Γ ⊢ A -- functions ƛ_ : ∀ {Γ A B} → Γ , A ⊢ B --------- → Γ ⊢ A ⇒ B _·_ : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A --------- → Γ ⊢ B -- naturals `zero : ∀ {Γ} ------ → Γ ⊢ `ℕ `suc_ : ∀ {Γ} → Γ ⊢ `ℕ ------ → Γ ⊢ `ℕ case : ∀ {Γ A} → Γ ⊢ `ℕ → Γ ⊢ A → Γ , `ℕ ⊢ A ----- → Γ ⊢ A -- fixpoint μ_ : ∀ {Γ A} → Γ , A ⊢ A ---------- → Γ ⊢ A -- primitive numbers con : ∀ {Γ} → ℕ ------- → Γ ⊢ Nat _`*_ : ∀ {Γ} → Γ ⊢ Nat → Γ ⊢ Nat ------- → Γ ⊢ Nat -- let `let : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B ---------- → Γ ⊢ B -- products `⟨_,_⟩ : ∀ {Γ A B} → Γ ⊢ A → Γ ⊢ B ----------- → Γ ⊢ A `× B `proj₁ : ∀ {Γ A B} → Γ ⊢ A `× B ----------- → Γ ⊢ A `proj₂ : ∀ {Γ A B} → Γ ⊢ A `× B ----------- → Γ ⊢ B -- alternative formulation of products case× : ∀ {Γ A B C} → Γ ⊢ A `× B → Γ , A , B ⊢ C -------------- → Γ ⊢ C
Abbreviating de Bruijn indices
lookup : Context → ℕ → Type lookup (Γ , A) zero = A lookup (Γ , _) (suc n) = lookup Γ n lookup ∅ _ = ⊥-elim impossible where postulate impossible : ⊥ count : ∀ {Γ} → (n : ℕ) → Γ ∋ lookup Γ n count {Γ , _} zero = Z count {Γ , _} (suc n) = S (count n) count {∅} _ = ⊥-elim impossible where postulate impossible : ⊥ #_ : ∀ {Γ} → (n : ℕ) → Γ ⊢ lookup Γ n # n = ` count n
Renaming
ext : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) → (∀ {A B} → Γ , A ∋ B → Δ , A ∋ B) ext ρ Z = Z ext ρ (S x) = S (ρ x) rename : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) → (∀ {A} → Γ ⊢ A → Δ ⊢ A) rename ρ (` x) = ` (ρ x) rename ρ (ƛ N) = ƛ (rename (ext ρ) N) rename ρ (L · M) = (rename ρ L) · (rename ρ M) rename ρ (`zero) = `zero rename ρ (`suc M) = `suc (rename ρ M) rename ρ (case L M N) = case (rename ρ L) (rename ρ M) (rename (ext ρ) N) rename ρ (μ N) = μ (rename (ext ρ) N) rename ρ (con n) = con n rename ρ (M `* N) = rename ρ M `* rename ρ N rename ρ (`let M N) = `let (rename ρ M) (rename (ext ρ) N) rename ρ `⟨ M , N ⟩ = `⟨ rename ρ M , rename ρ N ⟩ rename ρ (`proj₁ L) = `proj₁ (rename ρ L) rename ρ (`proj₂ L) = `proj₂ (rename ρ L) rename ρ (case× L M) = case× (rename ρ L) (rename (ext (ext ρ)) M)
Simultaneous Substitution
exts : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ⊢ A) → (∀ {A B} → Γ , A ∋ B → Δ , A ⊢ B) exts σ Z = ` Z exts σ (S x) = rename S_ (σ x) subst : ∀ {Γ Δ} → (∀ {C} → Γ ∋ C → Δ ⊢ C) → (∀ {C} → Γ ⊢ C → Δ ⊢ C) subst σ (` k) = σ k subst σ (ƛ N) = ƛ (subst (exts σ) N) subst σ (L · M) = (subst σ L) · (subst σ M) subst σ (`zero) = `zero subst σ (`suc M) = `suc (subst σ M) subst σ (case L M N) = case (subst σ L) (subst σ M) (subst (exts σ) N) subst σ (μ N) = μ (subst (exts σ) N) subst σ (con n) = con n subst σ (M `* N) = subst σ M `* subst σ N subst σ (`let M N) = `let (subst σ M) (subst (exts σ) N) subst σ `⟨ M , N ⟩ = `⟨ subst σ M , subst σ N ⟩ subst σ (`proj₁ L) = `proj₁ (subst σ L) subst σ (`proj₂ L) = `proj₂ (subst σ L) subst σ (case× L M) = case× (subst σ L) (subst (exts (exts σ)) M)
Single and double substitution
_[_] : ∀ {Γ A B} → Γ , A ⊢ B → Γ ⊢ A ------------ → Γ ⊢ B _[_] {Γ} {A} N V = subst {Γ , A} {Γ} σ N where σ : ∀ {B} → Γ , A ∋ B → Γ ⊢ B σ Z = V σ (S x) = ` x _[_][_] : ∀ {Γ A B C} → Γ , A , B ⊢ C → Γ ⊢ A → Γ ⊢ B --------------- → Γ ⊢ C _[_][_] {Γ} {A} {B} N V W = subst {Γ , A , B} {Γ} σ N where σ : ∀ {C} → Γ , A , B ∋ C → Γ ⊢ C σ Z = W σ (S Z) = V σ (S (S x)) = ` x
Values
data Value : ∀ {Γ A} → Γ ⊢ A → Set where -- functions V-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} --------------------------- → Value (ƛ N) -- naturals V-zero : ∀ {Γ} → ----------------- Value (`zero {Γ}) V-suc_ : ∀ {Γ} {V : Γ ⊢ `ℕ} → Value V -------------- → Value (`suc V) -- primitives V-con : ∀ {Γ n} --------------------- → Value {Γ = Γ} (con n) -- products V-⟨_,_⟩ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------- → Value `⟨ V , W ⟩
Implicit arguments need to be supplied when they are not fixed by the given arguments.
Reduction
infix 2 _—→_ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where -- functions ξ-·₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A ⇒ B} {M : Γ ⊢ A} → L —→ L′ --------------- → L · M —→ L′ · M ξ-·₂ : ∀ {Γ A B} {V : Γ ⊢ A ⇒ B} {M M′ : Γ ⊢ A} → Value V → M —→ M′ --------------- → V · M —→ V · M′ β-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} {V : Γ ⊢ A} → Value V -------------------- → (ƛ N) · V —→ N [ V ] -- naturals ξ-suc : ∀ {Γ} {M M′ : Γ ⊢ `ℕ} → M —→ M′ ----------------- → `suc M —→ `suc M′ ξ-case : ∀ {Γ A} {L L′ : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} → L —→ L′ ------------------------- → case L M N —→ case L′ M N β-zero : ∀ {Γ A} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} ------------------- → case `zero M N —→ M β-suc : ∀ {Γ A} {V : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} → Value V ---------------------------- → case (`suc V) M N —→ N [ V ] -- fixpoint β-μ : ∀ {Γ A} {N : Γ , A ⊢ A} ---------------- → μ N —→ N [ μ N ] -- primitive numbers ξ-*₁ : ∀ {Γ} {L L′ M : Γ ⊢ Nat} → L —→ L′ ----------------- → L `* M —→ L′ `* M ξ-*₂ : ∀ {Γ} {V M M′ : Γ ⊢ Nat} → Value V → M —→ M′ ----------------- → V `* M —→ V `* M′ δ-* : ∀ {Γ c d} ------------------------------------- → con {Γ = Γ} c `* con d —→ con (c * d) -- let ξ-let : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ , A ⊢ B} → M —→ M′ --------------------- → `let M N —→ `let M′ N β-let : ∀ {Γ A B} {V : Γ ⊢ A} {N : Γ , A ⊢ B} → Value V ------------------- → `let V N —→ N [ V ] -- products ξ-⟨,⟩₁ : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ ⊢ B} → M —→ M′ ------------------------- → `⟨ M , N ⟩ —→ `⟨ M′ , N ⟩ ξ-⟨,⟩₂ : ∀ {Γ A B} {V : Γ ⊢ A} {N N′ : Γ ⊢ B} → Value V → N —→ N′ ------------------------- → `⟨ V , N ⟩ —→ `⟨ V , N′ ⟩ ξ-proj₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B} → L —→ L′ --------------------- → `proj₁ L —→ `proj₁ L′ ξ-proj₂ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B} → L —→ L′ --------------------- → `proj₂ L —→ `proj₂ L′ β-proj₁ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------------- → `proj₁ `⟨ V , W ⟩ —→ V β-proj₂ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------------- → `proj₂ `⟨ V , W ⟩ —→ W -- alternative formulation of products ξ-case× : ∀ {Γ A B C} {L L′ : Γ ⊢ A `× B} {M : Γ , A , B ⊢ C} → L —→ L′ ----------------------- → case× L M —→ case× L′ M β-case× : ∀ {Γ A B C} {V : Γ ⊢ A} {W : Γ ⊢ B} {M : Γ , A , B ⊢ C} → Value V → Value W ---------------------------------- → case× `⟨ V , W ⟩ M —→ M [ V ][ W ]
Reflexive and transitive closure
infix 2 _—↠_ infix 1 begin_ infixr 2 _—→⟨_⟩_ infix 3 _∎ data _—↠_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where _∎ : ∀ {Γ A} (M : Γ ⊢ A) -------- → M —↠ M _—→⟨_⟩_ : ∀ {Γ A} (L : Γ ⊢ A) {M N : Γ ⊢ A} → L —→ M → M —↠ N ------ → L —↠ N begin_ : ∀ {Γ} {A} {M N : Γ ⊢ A} → M —↠ N ------ → M —↠ N begin M—↠N = M—↠N
Values do not reduce
V¬—→ : ∀ {Γ A} {M N : Γ ⊢ A} → Value M ---------- → ¬ (M —→ N) V¬—→ V-ƛ () V¬—→ V-zero () V¬—→ (V-suc VM) (ξ-suc M—→M′) = V¬—→ VM M—→M′ V¬—→ V-con () V¬—→ V-⟨ VM , _ ⟩ (ξ-⟨,⟩₁ M—→M′) = V¬—→ VM M—→M′ V¬—→ V-⟨ _ , VN ⟩ (ξ-⟨,⟩₂ _ N—→N′) = V¬—→ VN N—→N′
Progress
data Progress {A} (M : ∅ ⊢ A) : Set where step : ∀ {N : ∅ ⊢ A} → M —→ N ---------- → Progress M done : Value M ---------- → Progress M progress : ∀ {A} → (M : ∅ ⊢ A) ----------- → Progress M progress (` ()) progress (ƛ N) = done V-ƛ progress (L · M) with progress L ... | step L—→L′ = step (ξ-·₁ L—→L′) ... | done V-ƛ with progress M ... | step M—→M′ = step (ξ-·₂ V-ƛ M—→M′) ... | done VM = step (β-ƛ VM) progress (`zero) = done V-zero progress (`suc M) with progress M ... | step M—→M′ = step (ξ-suc M—→M′) ... | done VM = done (V-suc VM) progress (case L M N) with progress L ... | step L—→L′ = step (ξ-case L—→L′) ... | done V-zero = step β-zero ... | done (V-suc VL) = step (β-suc VL) progress (μ N) = step β-μ progress (con n) = done V-con progress (L `* M) with progress L ... | step L—→L′ = step (ξ-*₁ L—→L′) ... | done V-con with progress M ... | step M—→M′ = step (ξ-*₂ V-con M—→M′) ... | done V-con = step δ-* progress (`let M N) with progress M ... | step M—→M′ = step (ξ-let M—→M′) ... | done VM = step (β-let VM) progress `⟨ M , N ⟩ with progress M ... | step M—→M′ = step (ξ-⟨,⟩₁ M—→M′) ... | done VM with progress N ... | step N—→N′ = step (ξ-⟨,⟩₂ VM N—→N′) ... | done VN = done (V-⟨ VM , VN ⟩) progress (`proj₁ L) with progress L ... | step L—→L′ = step (ξ-proj₁ L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-proj₁ VM VN) progress (`proj₂ L) with progress L ... | step L—→L′ = step (ξ-proj₂ L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-proj₂ VM VN) progress (case× L M) with progress L ... | step L—→L′ = step (ξ-case× L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-case× VM VN)
Evaluation
data Gas : Set where gas : ℕ → Gas data Finished {Γ A} (N : Γ ⊢ A) : Set where done : Value N ---------- → Finished N out-of-gas : ---------- Finished N data Steps : ∀ {A} → ∅ ⊢ A → Set where steps : ∀ {A} {L N : ∅ ⊢ A} → L —↠ N → Finished N ---------- → Steps L eval : ∀ {A} → Gas → (L : ∅ ⊢ A) ----------- → Steps L eval (gas zero) L = steps (L ∎) out-of-gas eval (gas (suc m)) L with progress L ... | done VL = steps (L ∎) (done VL) ... | step {M} L—→M with eval (gas m) M ... | steps M—↠N fin = steps (L —→⟨ L—→M ⟩ M—↠N) fin
Examples
cube : ∅ ⊢ Nat ⇒ Nat cube = ƛ (# 0 `* # 0 `* # 0) _ : cube · con 2 —↠ con 8 _ = begin cube · con 2 —→⟨ β-ƛ V-con ⟩ con 2 `* con 2 `* con 2 —→⟨ ξ-*₁ δ-* ⟩ con 4 `* con 2 —→⟨ δ-* ⟩ con 8 ∎ exp10 : ∅ ⊢ Nat ⇒ Nat exp10 = ƛ (`let (# 0 `* # 0) (`let (# 0 `* # 0) (`let (# 0 `* # 2) (# 0 `* # 0)))) _ : exp10 · con 2 —↠ con 1024 _ = begin exp10 · con 2 —→⟨ β-ƛ V-con ⟩ `let (con 2 `* con 2) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) —→⟨ ξ-let δ-* ⟩ `let (con 4) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) —→⟨ β-let V-con ⟩ `let (con 4 `* con 4) (`let (# 0 `* con 2) (# 0 `* # 0)) —→⟨ ξ-let δ-* ⟩ `let (con 16) (`let (# 0 `* con 2) (# 0 `* # 0)) —→⟨ β-let V-con ⟩ `let (con 16 `* con 2) (# 0 `* # 0) —→⟨ ξ-let δ-* ⟩ `let (con 32) (# 0 `* # 0) —→⟨ β-let V-con ⟩ con 32 `* con 32 —→⟨ δ-* ⟩ con 1024 ∎ swap× : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap× = ƛ `⟨ `proj₂ (# 0) , `proj₁ (# 0) ⟩ _ : swap× · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩ _ = begin swap× · `⟨ con 42 , `zero ⟩ —→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩ `⟨ `proj₂ `⟨ con 42 , `zero ⟩ , `proj₁ `⟨ con 42 , `zero ⟩ ⟩ —→⟨ ξ-⟨,⟩₁ (β-proj₂ V-con V-zero) ⟩ `⟨ `zero , `proj₁ `⟨ con 42 , `zero ⟩ ⟩ —→⟨ ξ-⟨,⟩₂ V-zero (β-proj₁ V-con V-zero) ⟩ `⟨ `zero , con 42 ⟩ ∎ swap×-case : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap×-case = ƛ case× (# 0) `⟨ # 0 , # 1 ⟩ _ : swap×-case · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩ _ = begin swap×-case · `⟨ con 42 , `zero ⟩ —→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩ case× `⟨ con 42 , `zero ⟩ `⟨ # 0 , # 1 ⟩ —→⟨ β-case× V-con V-zero ⟩ `⟨ `zero , con 42 ⟩ ∎
Exercise More
(recommended in part)
Formalise the remaining constructs defined in this chapter. Evaluate each example, applied to data as needed, to confirm it returns the expected answer.
- sums (recommended)
- unit type
- an alternative formulation of unit type
- empty type (recommended)
- lists