module Assignment4 where

YOUR NAME AND EMAIL GOES HERE

Introduction

You must do all the exercises labelled “(recommended)”.

Exercises labelled “(stretch)” are there to provide an extra challenge. You don’t need to do all of these, but should attempt at least a few.

Exercises without a label are optional, and may be done if you want some extra practice.

Please ensure your files execute correctly under Agda!

IMPORTANT For ease of marking, when modifying the given code please write

-- begin
-- end

before and after code you add, to indicate your changes.

Imports

import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
open import Data.Empty using (; ⊥-elim)
open import Data.Nat using (; zero; suc; _+_; _*_)
open import Data.Product using (_×_; ; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
open import Data.String using (String; _≟_)
open import Relation.Nullary using (¬_; Dec; yes; no)

DeBruijn

module DeBruijn where

Remember to indent all code by two spaces.

  open import plfa.part2.DeBruijn

Write out the definition of a lambda term that multiplies two natural numbers, now adapted to the inherently typed DeBruijn representation.

Exercise V¬—→

Following the previous development, show values do not reduce, and its corollary, terms that reduce are not values.

Using the evaluator, confirm that two times two is four.

More

module More where

Remember to indent all code by two spaces.

Syntax

  infix  4 _⊢_
  infix  4 _∋_
  infixl 5 _,_

  infixr 7 _⇒_
  infixr 8 _`⊎_
  infixr 9 _`×_

  infix  5 ƛ_
  infix  5 μ_
  infixl 7 _·_
  infixl 8 _`*_
  infix  8 `suc_
  infix  9 `_
  infix  9 S_
  infix  9 #_

Types

  data Type : Set where
    `ℕ    : Type
    _⇒_   : Type  Type  Type
    Nat   : Type
    _`×_  : Type  Type  Type
    _`⊎_  : Type  Type  Type
    `⊤    : Type
    `⊥    : Type
    `List : Type  Type

Contexts

  data Context : Set where
       : Context
    _,_ : Context  Type  Context

Variables and the lookup judgment

  data _∋_ : Context  Type  Set where

    Z :  {Γ A}
        ---------
       Γ , A  A

    S_ :  {Γ A B}
       Γ  B
        ---------
       Γ , A  B

Terms and the typing judgment

  data _⊢_ : Context  Type  Set where

    -- variables

    `_ :  {Γ A}
       Γ  A
        -----
       Γ  A

    -- functions

    ƛ_  :   {Γ A B}
       Γ , A  B
        ---------
       Γ  A  B

    _·_ :  {Γ A B}
       Γ  A  B
       Γ  A
        ---------
       Γ  B

    -- naturals

    `zero :  {Γ}
        ------
       Γ  `ℕ

    `suc_ :  {Γ}
       Γ  `ℕ
        ------
       Γ  `ℕ

    case :  {Γ A}
       Γ  `ℕ
       Γ  A
       Γ , `ℕ  A
        -----
       Γ  A

    -- fixpoint

    μ_ :  {Γ A}
       Γ , A  A
        ----------
       Γ  A

    -- primitive numbers

    con :  {Γ}
       
        -------
       Γ  Nat

    _`*_ :  {Γ}
       Γ  Nat
       Γ  Nat
        -------
       Γ  Nat

    -- let

    `let :  {Γ A B}
       Γ  A
       Γ , A  B
        ----------
       Γ  B

    -- products

    `⟨_,_⟩ :  {Γ A B}
       Γ  A
       Γ  B
        -----------
       Γ  A  B

    `proj₁ :  {Γ A B}
       Γ  A  B
        -----------
       Γ  A

    `proj₂ :  {Γ A B}
       Γ  A  B
        -----------
       Γ  B

    -- alternative formulation of products

    case× :  {Γ A B C}
       Γ  A  B
       Γ , A , B  C
        --------------
       Γ  C

Abbreviating de Bruijn indices

  lookup : Context    Type
  lookup (Γ , A) zero     =  A
  lookup (Γ , _) (suc n)  =  lookup Γ n
  lookup        _        =  ⊥-elim impossible
    where postulate impossible : 

  count :  {Γ}  (n : )  Γ  lookup Γ n
  count {Γ , _} zero     =  Z
  count {Γ , _} (suc n)  =  S (count n)
  count {}     _        =  ⊥-elim impossible
    where postulate impossible : 

  #_ :  {Γ}  (n : )  Γ  lookup Γ n
  # n  =  ` count n

Renaming

  ext :  {Γ Δ}  (∀ {A}  Γ  A  Δ  A)  (∀ {A B}  Γ , A  B  Δ , A  B)
  ext ρ Z      =  Z
  ext ρ (S x)  =  S (ρ x)

  rename :  {Γ Δ}  (∀ {A}  Γ  A  Δ  A)  (∀ {A}  Γ  A  Δ  A)
  rename ρ (` x)          =  ` (ρ x)
  rename ρ (ƛ N)          =  ƛ (rename (ext ρ) N)
  rename ρ (L · M)        =  (rename ρ L) · (rename ρ M)
  rename ρ (`zero)        =  `zero
  rename ρ (`suc M)       =  `suc (rename ρ M)
  rename ρ (case L M N)   =  case (rename ρ L) (rename ρ M) (rename (ext ρ) N)
  rename ρ (μ N)          =  μ (rename (ext ρ) N)
  rename ρ (con n)        =  con n
  rename ρ (M `* N)       =  rename ρ M `* rename ρ N
  rename ρ (`let M N)     =  `let (rename ρ M) (rename (ext ρ) N)
  rename ρ `⟨ M , N      =  `⟨ rename ρ M , rename ρ N 
  rename ρ (`proj₁ L)     =  `proj₁ (rename ρ L)
  rename ρ (`proj₂ L)     =  `proj₂ (rename ρ L)
  rename ρ (case× L M)    =  case× (rename ρ L) (rename (ext (ext ρ)) M)

Simultaneous Substitution

  exts :  {Γ Δ}  (∀ {A}  Γ  A  Δ  A)  (∀ {A B}  Γ , A  B  Δ , A  B)
  exts σ Z      =  ` Z
  exts σ (S x)  =  rename S_ (σ x)

  subst :  {Γ Δ}  (∀ {C}  Γ  C  Δ  C)  (∀ {C}  Γ  C  Δ  C)
  subst σ (` k)          =  σ k
  subst σ (ƛ N)          =  ƛ (subst (exts σ) N)
  subst σ (L · M)        =  (subst σ L) · (subst σ M)
  subst σ (`zero)        =  `zero
  subst σ (`suc M)       =  `suc (subst σ M)
  subst σ (case L M N)   =  case (subst σ L) (subst σ M) (subst (exts σ) N)
  subst σ (μ N)          =  μ (subst (exts σ) N)
  subst σ (con n)        =  con n
  subst σ (M `* N)       =  subst σ M `* subst σ N
  subst σ (`let M N)     =  `let (subst σ M) (subst (exts σ) N)
  subst σ `⟨ M , N      =  `⟨ subst σ M , subst σ N 
  subst σ (`proj₁ L)     =  `proj₁ (subst σ L)
  subst σ (`proj₂ L)     =  `proj₂ (subst σ L)
  subst σ (case× L M)    =  case× (subst σ L) (subst (exts (exts σ)) M)

Single and double substitution

  _[_] :  {Γ A B}
     Γ , A  B
     Γ  A
    ------------
     Γ  B
  _[_] {Γ} {A} N V =  subst {Γ , A} {Γ} σ N
    where
    σ :  {B}  Γ , A  B  Γ  B
    σ Z      =  V
    σ (S x)  =  ` x

  _[_][_] :  {Γ A B C}
     Γ , A , B  C
     Γ  A
     Γ  B
      ---------------
     Γ  C
  _[_][_] {Γ} {A} {B} N V W =  subst {Γ , A , B} {Γ} σ N
    where
    σ :  {C}  Γ , A , B  C  Γ  C
    σ Z          =  W
    σ (S Z)      =  V
    σ (S (S x))  =  ` x

Values

  data Value :  {Γ A}  Γ  A  Set where

    -- functions

    V-ƛ :  {Γ A B} {N : Γ , A  B}
        ---------------------------
       Value (ƛ N)

    -- naturals

    V-zero :  {Γ} 
        -----------------
        Value (`zero {Γ})

    V-suc_ :  {Γ} {V : Γ  `ℕ}
       Value V
        --------------
       Value (`suc V)

    -- primitives

    V-con :  {Γ n}
        ---------------------
       Value {Γ = Γ} (con n)

    -- products

    V-⟨_,_⟩ :  {Γ A B} {V : Γ  A} {W : Γ  B}
       Value V
       Value W
        ----------------
       Value `⟨ V , W 

Implicit arguments need to be supplied when they are not fixed by the given arguments.

Reduction

  infix 2 _—→_

  data _—→_ :  {Γ A}  (Γ  A)  (Γ  A)  Set where

    -- functions

    ξ-·₁ :  {Γ A B} {L L′ : Γ  A  B} {M : Γ  A}
       L —→ L′
        ---------------
       L · M —→ L′ · M

    ξ-·₂ :  {Γ A B} {V : Γ  A  B} {M M′ : Γ  A}
       Value V
       M —→ M′
        ---------------
       V · M —→ V · M′

    β-ƛ :  {Γ A B} {N : Γ , A  B} {V : Γ  A}
       Value V
        --------------------
       (ƛ N) · V —→ N [ V ]

    -- naturals

    ξ-suc :  {Γ} {M M′ : Γ  `ℕ}
       M —→ M′
        -----------------
       `suc M —→ `suc M′

    ξ-case :  {Γ A} {L L′ : Γ  `ℕ} {M : Γ  A} {N : Γ , `ℕ  A}
       L —→ L′
        -------------------------
       case L M N —→ case L′ M N

    β-zero :   {Γ A} {M : Γ  A} {N : Γ , `ℕ  A}
        -------------------
       case `zero M N —→ M

    β-suc :  {Γ A} {V : Γ  `ℕ} {M : Γ  A} {N : Γ , `ℕ  A}
       Value V
        ----------------------------
       case (`suc V) M N —→ N [ V ]

    -- fixpoint

    β-μ :  {Γ A} {N : Γ , A  A}
        ----------------
       μ N —→ N [ μ N ]

    -- primitive numbers

    ξ-*₁ :  {Γ} {L L′ M : Γ  Nat}
       L —→ L′
        -----------------
       L `* M —→ L′ `* M

    ξ-*₂ :  {Γ} {V M M′ : Γ  Nat}
       Value V
       M —→ M′
        -----------------
       V `* M —→ V `* M′

    δ-* :  {Γ c d}
        -------------------------------------
       con {Γ = Γ} c `* con d —→ con (c * d)

    -- let

    ξ-let :  {Γ A B} {M M′ : Γ  A} {N : Γ , A  B}
       M —→ M′
        ---------------------
       `let M N —→ `let M′ N

    β-let :  {Γ A B} {V : Γ  A} {N : Γ , A  B}
       Value V
        -------------------
       `let V N —→ N [ V ]

    -- products

    ξ-⟨,⟩₁ :  {Γ A B} {M M′ : Γ  A} {N : Γ  B}
       M —→ M′
        -------------------------
       `⟨ M , N  —→ `⟨ M′ , N 

    ξ-⟨,⟩₂ :  {Γ A B} {V : Γ  A} {N N′ : Γ  B}
       Value V
       N —→ N′
        -------------------------
       `⟨ V , N  —→ `⟨ V , N′ 

    ξ-proj₁ :  {Γ A B} {L L′ : Γ  A  B}
       L —→ L′
        ---------------------
       `proj₁ L —→ `proj₁ L′

    ξ-proj₂ :  {Γ A B} {L L′ : Γ  A  B}
       L —→ L′
        ---------------------
       `proj₂ L —→ `proj₂ L′

    β-proj₁ :  {Γ A B} {V : Γ  A} {W : Γ  B}
       Value V
       Value W
        ----------------------
       `proj₁ `⟨ V , W  —→ V

    β-proj₂ :  {Γ A B} {V : Γ  A} {W : Γ  B}
       Value V
       Value W
        ----------------------
       `proj₂ `⟨ V , W  —→ W

    -- alternative formulation of products

    ξ-case× :  {Γ A B C} {L L′ : Γ  A  B} {M : Γ , A , B  C}
       L —→ L′
        -----------------------
       case× L M —→ case× L′ M

    β-case× :  {Γ A B C} {V : Γ  A} {W : Γ  B} {M : Γ , A , B  C}
       Value V
       Value W
        ----------------------------------
       case× `⟨ V , W  M —→ M [ V ][ W ]

Reflexive and transitive closure

  infix  2 _—↠_
  infix  1 begin_
  infixr 2 _—→⟨_⟩_
  infix  3 _∎

  data _—↠_ :  {Γ A}  (Γ  A)  (Γ  A)  Set where

    _∎ :  {Γ A} (M : Γ  A)
        --------
       M —↠ M

    _—→⟨_⟩_ :  {Γ A} (L : Γ  A) {M N : Γ  A}
       L —→ M
       M —↠ N
        ------
       L —↠ N

  begin_ :  {Γ} {A} {M N : Γ  A}
     M —↠ N
      ------
     M —↠ N
  begin M—↠N = M—↠N

Values do not reduce

  V¬—→ :  {Γ A} {M N : Γ  A}
     Value M
      ----------
     ¬ (M —→ N)
  V¬—→ V-ƛ          ()
  V¬—→ V-zero       ()
  V¬—→ (V-suc VM)   (ξ-suc M—→M′)     =  V¬—→ VM M—→M′
  V¬—→ V-con        ()
  V¬—→ V-⟨ VM , _  (ξ-⟨,⟩₁ M—→M′)    =  V¬—→ VM M—→M′
  V¬—→ V-⟨ _ , VN  (ξ-⟨,⟩₂ _ N—→N′)  =  V¬—→ VN N—→N′

Progress

  data Progress {A} (M :   A) : Set where

    step :  {N :   A}
       M —→ N
        ----------
       Progress M

    done :
        Value M
        ----------
       Progress M

  progress :  {A}
     (M :   A)
      -----------
     Progress M
  progress (` ())
  progress (ƛ N)                              =  done V-ƛ
  progress (L · M) with progress L
  ...    | step L—→L′                         =  step (ξ-·₁ L—→L′)
  ...    | done V-ƛ with progress M
  ...        | step M—→M′                     =  step (ξ-·₂ V-ƛ M—→M′)
  ...        | done VM                        =  step (β-ƛ VM)
  progress (`zero)                            =  done V-zero
  progress (`suc M) with progress M
  ...    | step M—→M′                         =  step (ξ-suc M—→M′)
  ...    | done VM                            =  done (V-suc VM)
  progress (case L M N) with progress L
  ...    | step L—→L′                         =  step (ξ-case L—→L′)
  ...    | done V-zero                        =  step β-zero
  ...    | done (V-suc VL)                    =  step (β-suc VL)
  progress (μ N)                              =  step β-μ
  progress (con n)                            =  done V-con
  progress (L `* M) with progress L
  ...    | step L—→L′                         =  step (ξ-*₁ L—→L′)
  ...    | done V-con with progress M
  ...        | step M—→M′                     =  step (ξ-*₂ V-con M—→M′)
  ...        | done V-con                     =  step δ-*
  progress (`let M N) with progress M
  ...    | step M—→M′                         =  step (ξ-let M—→M′)
  ...    | done VM                            =  step (β-let VM)
  progress `⟨ M , N  with progress M
  ...    | step M—→M′                         =  step (ξ-⟨,⟩₁ M—→M′)
  ...    | done VM with progress N
  ...        | step N—→N′                     =  step (ξ-⟨,⟩₂ VM N—→N′)
  ...        | done VN                        =  done (V-⟨ VM , VN )
  progress (`proj₁ L) with progress L
  ...    | step L—→L′                         =  step (ξ-proj₁ L—→L′)
  ...    | done (V-⟨ VM , VN )               =  step (β-proj₁ VM VN)
  progress (`proj₂ L) with progress L
  ...    | step L—→L′                         =  step (ξ-proj₂ L—→L′)
  ...    | done (V-⟨ VM , VN )               =  step (β-proj₂ VM VN)
  progress (case× L M) with progress L
  ...    | step L—→L′                         =  step (ξ-case× L—→L′)
  ...    | done (V-⟨ VM , VN )               =  step (β-case× VM VN)

Evaluation

  data Gas : Set where
    gas :   Gas

  data Finished {Γ A} (N : Γ  A) : Set where

     done :
         Value N
         ----------
        Finished N

     out-of-gas :
         ----------
         Finished N

  data Steps :  {A}    A  Set where

    steps :  {A} {L N :   A}
       L —↠ N
       Finished N
        ----------
       Steps L

  eval :  {A}
     Gas
     (L :   A)
      -----------
     Steps L
  eval (gas zero)    L                     =  steps (L ) out-of-gas
  eval (gas (suc m)) L with progress L
  ... | done VL                            =  steps (L ) (done VL)
  ... | step {M} L—→M with eval (gas m) M
  ...    | steps M—↠N fin                  =  steps (L —→⟨ L—→M  M—↠N) fin

Examples

  cube :   Nat  Nat
  cube = ƛ (# 0 `* # 0 `* # 0)

  _ : cube · con 2 —↠ con 8
  _ =
    begin
      cube · con 2
    —→⟨ β-ƛ V-con 
      con 2 `* con 2 `* con 2
    —→⟨ ξ-*₁ δ-* 
      con 4 `* con 2
    —→⟨ δ-* 
      con 8
    

  exp10 :   Nat  Nat
  exp10 = ƛ (`let (# 0 `* # 0)
              (`let (# 0 `* # 0)
                (`let (# 0 `* # 2)
                  (# 0 `* # 0))))

  _ : exp10 · con 2 —↠ con 1024
  _ =
    begin
      exp10 · con 2
    —→⟨ β-ƛ V-con 
      `let (con 2 `* con 2) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0)))
    —→⟨ ξ-let δ-* 
      `let (con 4) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0)))
    —→⟨ β-let V-con 
      `let (con 4 `* con 4) (`let (# 0 `* con 2) (# 0 `* # 0))
    —→⟨ ξ-let δ-* 
      `let (con 16) (`let (# 0 `* con 2) (# 0 `* # 0))
    —→⟨ β-let V-con 
      `let (con 16 `* con 2) (# 0 `* # 0)
    —→⟨ ξ-let δ-* 
      `let (con 32) (# 0 `* # 0)
    —→⟨ β-let V-con 
      con 32 `* con 32
    —→⟨ δ-* 
      con 1024
    

  swap× :  {A B}    A  B  B  A
  swap× = ƛ `⟨ `proj₂ (# 0) , `proj₁ (# 0) 

  _ : swap× · `⟨ con 42 , `zero  —↠ `⟨ `zero , con 42 
  _ =
    begin
      swap× · `⟨ con 42 , `zero 
    —→⟨ β-ƛ V-⟨ V-con , V-zero  
      `⟨ `proj₂ `⟨ con 42 , `zero  , `proj₁ `⟨ con 42 , `zero  
    —→⟨ ξ-⟨,⟩₁ (β-proj₂ V-con V-zero) 
      `⟨ `zero , `proj₁ `⟨ con 42 , `zero  
    —→⟨ ξ-⟨,⟩₂ V-zero (β-proj₁ V-con V-zero) 
      `⟨ `zero , con 42 
    

  swap×-case :  {A B}    A  B  B  A
  swap×-case = ƛ case× (# 0) `⟨ # 0 , # 1 

  _ : swap×-case · `⟨ con 42 , `zero  —↠ `⟨ `zero , con 42 
  _ =
    begin
       swap×-case · `⟨ con 42 , `zero 
     —→⟨ β-ƛ V-⟨ V-con , V-zero  
       case× `⟨ con 42 , `zero  `⟨ # 0 , # 1 
     —→⟨ β-case× V-con V-zero 
       `⟨ `zero , con 42 
     

Formalise the remaining constructs defined in this chapter. Evaluate each example, applied to data as needed, to confirm it returns the expected answer.

  • sums (recommended)
  • unit type
  • an alternative formulation of unit type
  • empty type (recommended)
  • lists