More: Additional constructs of simply-typed lambda calculus
module plfa.part2.More where
So far, we have focussed on a relatively minimal language, based on Plotkin’s PCF, which supports functions, naturals, and fixpoints. In this chapter we extend our calculus to support the following:
- primitive numbers
- let bindings
- products
- an alternative formulation of products
- sums
- unit type
- an alternative formulation of unit type
- empty type
- lists
All of the data types should be familiar from Part I of this textbook. For let and the alternative formulations we show how they translate to other constructs in the calculus. Most of the description will be informal. We show how to formalise the first four constructs and leave the rest as an exercise for the reader.
Our informal descriptions will be in the style of Chapter Lambda, using extrinsically-typed terms, while our formalisation will be in the style of Chapter DeBruijn, using intrinsically-typed terms.
By now, explaining with symbols should be more concise, more precise, and easier to follow than explaining in prose. For each construct, we give syntax, typing, reductions, and an example. We also give translations where relevant; formally establishing the correctness of translations will be the subject of the next chapter.
Primitive numbers
We define a Nat
type equivalent to the built-in natural number type with multiplication as a primitive operation on numbers:
Syntax
A, B, C ::= ... Types
Nat primitive natural numbers
L, M, N ::= ... Terms
con c constant
L `* M multiplication
V, W ::= ... Values
con c constant
Typing
The hypothesis of the con
rule is unusual, in that it refers to a typing judgment of Agda rather than a typing judgment of the defined calculus:
c : ℕ
--------------- con
Γ ⊢ con c : Nat
Γ ⊢ L : Nat
Γ ⊢ M : Nat
---------------- _`*_
Γ ⊢ L `* M : Nat
Reduction
A rule that defines a primitive directly, such as the last rule below, is called a δ rule. Here the δ rule defines multiplication of primitive numbers in terms of multiplication of naturals as given by the Agda standard prelude:
L —→ L′
----------------- ξ-*₁
L `* M —→ L′ `* M
M —→ M′
----------------- ξ-*₂
V `* M —→ V `* M′
----------------------------- δ-*
con c `* con d —→ con (c * d)
Example
Here is a function to cube a primitive number:
cube : ∅ ⊢ Nat ⇒ Nat
cube = ƛ x ⇒ x `* x `* x
Let bindings
Let bindings affect only the syntax of terms; they introduce no new types or values:
Syntax
L, M, N ::= ... Terms
`let x `= M `in N let
Typing
Γ ⊢ M ⦂ A
Γ , x ⦂ A ⊢ N ⦂ B
------------------------- `let
Γ ⊢ `let x `= M `in N ⦂ B
Reduction
M —→ M′
--------------------------------------- ξ-let
`let x `= M `in N —→ `let x `= M′ `in N
--------------------------------- β-let
`let x `= V `in N —→ N [ x := V ]
Example
Here is a function to raise a primitive number to the tenth power:
exp10 : ∅ ⊢ Nat ⇒ Nat
exp10 = ƛ x ⇒ `let x2 `= x `* x `in
`let x4 `= x2 `* x2 `in
`let x5 `= x4 `* x `in
x5 `* x5
Translation
We can translate each let term into an application of an abstraction:
(`let x `= M `in N) † = (ƛ x ⇒ (N †)) · (M †)
Here M †
is the translation of term M
from a calculus with the construct to a calculus without the construct.
Products
Syntax
A, B, C ::= ... Types
A `× B product type
L, M, N ::= ... Terms
`⟨ M , N ⟩ pair
`proj₁ L project first component
`proj₂ L project second component
V, W ::= ... Values
`⟨ V , W ⟩ pair
Typing
Γ ⊢ M ⦂ A
Γ ⊢ N ⦂ B
----------------------- `⟨_,_⟩ or `×-I
Γ ⊢ `⟨ M , N ⟩ ⦂ A `× B
Γ ⊢ L ⦂ A `× B
---------------- `proj₁ or `×-E₁
Γ ⊢ `proj₁ L ⦂ A
Γ ⊢ L ⦂ A `× B
---------------- `proj₂ or `×-E₂
Γ ⊢ `proj₂ L ⦂ B
Reduction
M —→ M′
------------------------- ξ-⟨,⟩₁
`⟨ M , N ⟩ —→ `⟨ M′ , N ⟩
N —→ N′
------------------------- ξ-⟨,⟩₂
`⟨ V , N ⟩ —→ `⟨ V , N′ ⟩
L —→ L′
--------------------- ξ-proj₁
`proj₁ L —→ `proj₁ L′
L —→ L′
--------------------- ξ-proj₂
`proj₂ L —→ `proj₂ L′
---------------------- β-proj₁
`proj₁ `⟨ V , W ⟩ —→ V
---------------------- β-proj₂
`proj₂ `⟨ V , W ⟩ —→ W
Example
Here is a function to swap the components of a pair:
swap× : ∅ ⊢ A `× B ⇒ B `× A
swap× = ƛ z ⇒ `⟨ `proj₂ z , `proj₁ z ⟩
Alternative formulation of products
There is an alternative formulation of products, where in place of two ways to eliminate the type we have a case term that binds two variables. We repeat the syntax in full, but only give the new type and reduction rules:
Syntax
A, B, C ::= ... Types
A `× B product type
L, M, N ::= ... Terms
`⟨ M , N ⟩ pair
case× L [⟨ x , y ⟩⇒ M ] case
V, W ::= Values
`⟨ V , W ⟩ pair
Typing
Γ ⊢ L ⦂ A `× B
Γ , x ⦂ A , y ⦂ B ⊢ N ⦂ C
------------------------------- case× or ×-E
Γ ⊢ case× L [⟨ x , y ⟩⇒ N ] ⦂ C
Reduction
L —→ L′
--------------------------------------------------- ξ-case×
case× L [⟨ x , y ⟩⇒ N ] —→ case× L′ [⟨ x , y ⟩⇒ N ]
--------------------------------------------------------- β-case×
case× `⟨ V , W ⟩ [⟨ x , y ⟩⇒ N ] —→ N [ x := V ][ y := W ]
Example
Here is a function to swap the components of a pair rewritten in the new notation:
swap×-case : ∅ ⊢ A `× B ⇒ B `× A
swap×-case = ƛ z ⇒ case× z
[⟨ x , y ⟩⇒ `⟨ y , x ⟩ ]
Translation
We can translate the alternative formulation into the one with projections:
(case× L [⟨ x , y ⟩⇒ N ]) †
=
`let z `= (L †) `in
`let x `= `proj₁ z `in
`let y `= `proj₂ z `in
(N †)
Here z
is a variable that does not appear free in N
. We refer to such a variable as fresh.
One might think that we could instead use a more compact translation:
-- WRONG
(case× L [⟨ x , y ⟩⇒ N ]) †
=
(N †) [ x := `proj₁ (L †) ][ y := `proj₂ (L †) ]
But this behaves differently. The first term always reduces L
before N
, and it computes `proj₁
and `proj₂
exactly once. The second term does not reduce L
to a value before reducing N
, and depending on how many times and where x
and y
appear in N
, it may reduce L
many times or not at all, and it may compute `proj₁
and `proj₂
many times or not at all.
We can also translate back the other way:
(`proj₁ L) ‡ = case× (L ‡) [⟨ x , y ⟩⇒ x ]
(`proj₂ L) ‡ = case× (L ‡) [⟨ x , y ⟩⇒ y ]
Sums
Syntax
A, B, C ::= ... Types
A `⊎ B sum type
L, M, N ::= ... Terms
`inj₁ M inject first component
`inj₂ N inject second component
case⊎ L [inj₁ x ⇒ M |inj₂ y ⇒ N ] case
V, W ::= ... Values
`inj₁ V inject first component
`inj₂ W inject second component
Typing
Γ ⊢ M ⦂ A
-------------------- `inj₁ or ⊎-I₁
Γ ⊢ `inj₁ M ⦂ A `⊎ B
Γ ⊢ N ⦂ B
-------------------- `inj₂ or ⊎-I₂
Γ ⊢ `inj₂ N ⦂ A `⊎ B
Γ ⊢ L ⦂ A `⊎ B
Γ , x ⦂ A ⊢ M ⦂ C
Γ , y ⦂ B ⊢ N ⦂ C
----------------------------------------- case⊎ or ⊎-E
Γ ⊢ case⊎ L [inj₁ x ⇒ M |inj₂ y ⇒ N ] ⦂ C
Reduction
M —→ M′
------------------- ξ-inj₁
`inj₁ M —→ `inj₁ M′
N —→ N′
------------------- ξ-inj₂
`inj₂ N —→ `inj₂ N′
L —→ L′
---------------------------------------------------------------------- ξ-case⊎
case⊎ L [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ case⊎ L′ [inj₁ x ⇒ M |inj₂ y ⇒ N ]
--------------------------------------------------------- β-inj₁
case⊎ (`inj₁ V) [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ M [ x := V ]
--------------------------------------------------------- β-inj₂
case⊎ (`inj₂ W) [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ N [ y := W ]
Example
Here is a function to swap the components of a sum:
swap⊎ : ∅ ⊢ A `⊎ B ⇒ B `⊎ A
swap⊎ = ƛ z ⇒ case⊎ z
[inj₁ x ⇒ `inj₂ x
|inj₂ y ⇒ `inj₁ y ]
Unit type
For the unit type, there is a way to introduce values of the type but no way to eliminate values of the type. There are no reduction rules.
Syntax
A, B, C ::= ... Types
`⊤ unit type
L, M, N ::= ... Terms
`tt unit value
V, W ::= ... Values
`tt unit value
Typing
------------ `tt or ⊤-I
Γ ⊢ `tt ⦂ `⊤
Reduction
(none)
Example
Here is the isomorphism between A
and A `× `⊤
:
to×⊤ : ∅ ⊢ A ⇒ A `× `⊤
to×⊤ = ƛ x ⇒ `⟨ x , `tt ⟩
from×⊤ : ∅ ⊢ A `× `⊤ ⇒ A
from×⊤ = ƛ z ⇒ `proj₁ z
Alternative formulation of unit type
There is an alternative formulation of the unit type, where in place of no way to eliminate the type we have a case term that binds zero variables. We repeat the syntax in full, but only give the new type and reduction rules:
Syntax
A, B, C ::= ... Types
`⊤ unit type
L, M, N ::= ... Terms
`tt unit value
`case⊤ L [tt⇒ N ] case
V, W ::= ... Values
`tt unit value
Typing
Γ ⊢ L ⦂ `⊤
Γ ⊢ M ⦂ A
------------------------ case⊤ or ⊤-E
Γ ⊢ case⊤ L [tt⇒ M ] ⦂ A
Reduction
L —→ L′
------------------------------------- ξ-case⊤
case⊤ L [tt⇒ M ] —→ case⊤ L′ [tt⇒ M ]
----------------------- β-case⊤
case⊤ `tt [tt⇒ M ] —→ M
Example
Here is half the isomorphism between A
and A `× `⊤
rewritten in the new notation:
from×⊤-case : ∅ ⊢ A `× `⊤ ⇒ A
from×⊤-case = ƛ z ⇒ case× z
[⟨ x , y ⟩⇒ case⊤ y
[tt⇒ x ] ]
Translation
We can translate the alternative formulation into one without case:
(case⊤ L [tt⇒ M ]) † = `let z `= (L †) `in (M †)
Here z
is a variable that does not appear free in M
.
Empty type
For the empty type, there is a way to eliminate values of the type but no way to introduce values of the type. There are no values of the type and no β rule, but there is a ξ rule. The case⊥
construct plays a role similar to ⊥-elim
in Agda:
Syntax
A, B, C ::= ... Types
`⊥ empty type
L, M, N ::= ... Terms
case⊥ L [] case
Typing
Γ ⊢ L ⦂ `⊥
------------------ case⊥ or ⊥-E
Γ ⊢ case⊥ L [] ⦂ A
Reduction
L —→ L′
------------------------- ξ-case⊥
case⊥ L [] —→ case⊥ L′ []
Example
Here is the isomorphism between A
and A `⊎ `⊥
:
to⊎⊥ : ∅ ⊢ A ⇒ A `⊎ `⊥
to⊎⊥ = ƛ x ⇒ `inj₁ x
from⊎⊥ : ∅ ⊢ A `⊎ `⊥ ⇒ A
from⊎⊥ = ƛ z ⇒ case⊎ z
[inj₁ x ⇒ x
|inj₂ y ⇒ case⊥ y
[] ]
Lists
Syntax
A, B, C ::= ... Types
`List A list type
L, M, N ::= ... Terms
`[] nil
M `∷ N cons
caseL L [[]⇒ M | x ∷ y ⇒ N ] case
V, W ::= ... Values
`[] nil
V `∷ W cons
Typing
----------------- `[] or List-I₁
Γ ⊢ `[] ⦂ `List A
Γ ⊢ M ⦂ A
Γ ⊢ N ⦂ `List A
-------------------- _`∷_ or List-I₂
Γ ⊢ M `∷ N ⦂ `List A
Γ ⊢ L ⦂ `List A
Γ ⊢ M ⦂ B
Γ , x ⦂ A , xs ⦂ `List A ⊢ N ⦂ B
-------------------------------------- caseL or List-E
Γ ⊢ caseL L [[]⇒ M | x ∷ xs ⇒ N ] ⦂ B
Reduction
M —→ M′
----------------- ξ-∷₁
M `∷ N —→ M′ `∷ N
N —→ N′
----------------- ξ-∷₂
V `∷ N —→ V `∷ N′
L —→ L′
--------------------------------------------------------------- ξ-caseL
caseL L [[]⇒ M | x ∷ xs ⇒ N ] —→ caseL L′ [[]⇒ M | x ∷ xs ⇒ N ]
------------------------------------ β-[]
caseL `[] [[]⇒ M | x ∷ xs ⇒ N ] —→ M
--------------------------------------------------------------- β-∷
caseL (V `∷ W) [[]⇒ M | x ∷ xs ⇒ N ] —→ N [ x := V ][ xs := W ]
Example
Here is the map function for lists:
mapL : ∅ ⊢ (A ⇒ B) ⇒ `List A ⇒ `List B
mapL = μ mL ⇒ ƛ f ⇒ ƛ xs ⇒
caseL xs
[[]⇒ `[]
| x ∷ xs ⇒ f · x `∷ mL · f · xs ]
Formalisation
We now show how to formalise
- primitive numbers
- let bindings
- products
- an alternative formulation of products
and leave formalisation of the remaining constructs as an exercise.
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc; _*_; _<_; _≤?_; z≤n; s≤s) open import Relation.Nullary.Negation using (¬_) open import Relation.Nullary.Decidable using (True; toWitness)
Syntax
infix 4 _⊢_ infix 4 _∋_ infixl 5 _,_ infixr 7 _⇒_ infixr 9 _`×_ infix 5 ƛ_ infix 5 μ_ infixl 7 _·_ infixl 8 _`*_ infix 8 `suc_ infix 9 `_ infix 9 S_ infix 9 #_
Types
data Type : Set where `ℕ : Type _⇒_ : Type → Type → Type Nat : Type _`×_ : Type → Type → Type
Contexts
data Context : Set where ∅ : Context _,_ : Context → Type → Context
Variables and the lookup judgment
data _∋_ : Context → Type → Set where Z : ∀ {Γ A} --------- → Γ , A ∋ A S_ : ∀ {Γ A B} → Γ ∋ B --------- → Γ , A ∋ B
Terms and the typing judgment
data _⊢_ : Context → Type → Set where -- variables `_ : ∀ {Γ A} → Γ ∋ A ----- → Γ ⊢ A -- functions ƛ_ : ∀ {Γ A B} → Γ , A ⊢ B --------- → Γ ⊢ A ⇒ B _·_ : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A --------- → Γ ⊢ B -- naturals `zero : ∀ {Γ} ------ → Γ ⊢ `ℕ `suc_ : ∀ {Γ} → Γ ⊢ `ℕ ------ → Γ ⊢ `ℕ case : ∀ {Γ A} → Γ ⊢ `ℕ → Γ ⊢ A → Γ , `ℕ ⊢ A ----- → Γ ⊢ A -- fixpoint μ_ : ∀ {Γ A} → Γ , A ⊢ A ---------- → Γ ⊢ A -- primitive numbers con : ∀ {Γ} → ℕ ------- → Γ ⊢ Nat _`*_ : ∀ {Γ} → Γ ⊢ Nat → Γ ⊢ Nat ------- → Γ ⊢ Nat -- let `let : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B ---------- → Γ ⊢ B -- products `⟨_,_⟩ : ∀ {Γ A B} → Γ ⊢ A → Γ ⊢ B ----------- → Γ ⊢ A `× B `proj₁ : ∀ {Γ A B} → Γ ⊢ A `× B ----------- → Γ ⊢ A `proj₂ : ∀ {Γ A B} → Γ ⊢ A `× B ----------- → Γ ⊢ B -- alternative formulation of products case× : ∀ {Γ A B C} → Γ ⊢ A `× B → Γ , A , B ⊢ C -------------- → Γ ⊢ C
Abbreviating de Bruijn indices
length : Context → ℕ length ∅ = zero length (Γ , _) = suc (length Γ) lookup : {Γ : Context} → {n : ℕ} → (p : n < length Γ) → Type lookup {(_ , A)} {zero} (s≤s z≤n) = A lookup {(Γ , _)} {(suc n)} (s≤s p) = lookup p count : ∀ {Γ} → {n : ℕ} → (p : n < length Γ) → Γ ∋ lookup p count {_ , _} {zero} (s≤s z≤n) = Z count {Γ , _} {(suc n)} (s≤s p) = S (count p) #_ : ∀ {Γ} → (n : ℕ) → {n∈Γ : True (suc n ≤? length Γ)} -------------------------------- → Γ ⊢ lookup (toWitness n∈Γ) #_ n {n∈Γ} = ` count (toWitness n∈Γ)
Renaming
ext : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) --------------------------------- → (∀ {A B} → Γ , A ∋ B → Δ , A ∋ B) ext ρ Z = Z ext ρ (S x) = S (ρ x) rename : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) ----------------------- → (∀ {A} → Γ ⊢ A → Δ ⊢ A) rename ρ (` x) = ` (ρ x) rename ρ (ƛ N) = ƛ (rename (ext ρ) N) rename ρ (L · M) = (rename ρ L) · (rename ρ M) rename ρ (`zero) = `zero rename ρ (`suc M) = `suc (rename ρ M) rename ρ (case L M N) = case (rename ρ L) (rename ρ M) (rename (ext ρ) N) rename ρ (μ N) = μ (rename (ext ρ) N) rename ρ (con n) = con n rename ρ (M `* N) = rename ρ M `* rename ρ N rename ρ (`let M N) = `let (rename ρ M) (rename (ext ρ) N) rename ρ `⟨ M , N ⟩ = `⟨ rename ρ M , rename ρ N ⟩ rename ρ (`proj₁ L) = `proj₁ (rename ρ L) rename ρ (`proj₂ L) = `proj₂ (rename ρ L) rename ρ (case× L M) = case× (rename ρ L) (rename (ext (ext ρ)) M)
Simultaneous Substitution
exts : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ⊢ A) → (∀ {A B} → Γ , A ∋ B → Δ , A ⊢ B) exts σ Z = ` Z exts σ (S x) = rename S_ (σ x) subst : ∀ {Γ Δ} → (∀ {C} → Γ ∋ C → Δ ⊢ C) → (∀ {C} → Γ ⊢ C → Δ ⊢ C) subst σ (` k) = σ k subst σ (ƛ N) = ƛ (subst (exts σ) N) subst σ (L · M) = (subst σ L) · (subst σ M) subst σ (`zero) = `zero subst σ (`suc M) = `suc (subst σ M) subst σ (case L M N) = case (subst σ L) (subst σ M) (subst (exts σ) N) subst σ (μ N) = μ (subst (exts σ) N) subst σ (con n) = con n subst σ (M `* N) = subst σ M `* subst σ N subst σ (`let M N) = `let (subst σ M) (subst (exts σ) N) subst σ `⟨ M , N ⟩ = `⟨ subst σ M , subst σ N ⟩ subst σ (`proj₁ L) = `proj₁ (subst σ L) subst σ (`proj₂ L) = `proj₂ (subst σ L) subst σ (case× L M) = case× (subst σ L) (subst (exts (exts σ)) M)
Single and double substitution
_[_] : ∀ {Γ A B} → Γ , B ⊢ A → Γ ⊢ B --------- → Γ ⊢ A _[_] {Γ} {A} {B} N M = subst {Γ , B} {Γ} σ {A} N where σ : ∀ {A} → Γ , B ∋ A → Γ ⊢ A σ Z = M σ (S x) = ` x _[_][_] : ∀ {Γ A B C} → Γ , A , B ⊢ C → Γ ⊢ A → Γ ⊢ B ------------- → Γ ⊢ C _[_][_] {Γ} {A} {B} N V W = subst {Γ , A , B} {Γ} σ N where σ : ∀ {C} → Γ , A , B ∋ C → Γ ⊢ C σ Z = W σ (S Z) = V σ (S (S x)) = ` x
Values
data Value : ∀ {Γ A} → Γ ⊢ A → Set where -- functions V-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} --------------------------- → Value (ƛ N) -- naturals V-zero : ∀ {Γ} ----------------- → Value (`zero {Γ}) V-suc_ : ∀ {Γ} {V : Γ ⊢ `ℕ} → Value V -------------- → Value (`suc V) -- primitives V-con : ∀ {Γ n} ----------------- → Value (con {Γ} n) -- products V-⟨_,_⟩ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------- → Value `⟨ V , W ⟩
Implicit arguments need to be supplied when they are not fixed by the given arguments.
Reduction
infix 2 _—→_ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where -- functions ξ-·₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A ⇒ B} {M : Γ ⊢ A} → L —→ L′ --------------- → L · M —→ L′ · M ξ-·₂ : ∀ {Γ A B} {V : Γ ⊢ A ⇒ B} {M M′ : Γ ⊢ A} → Value V → M —→ M′ --------------- → V · M —→ V · M′ β-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} {V : Γ ⊢ A} → Value V -------------------- → (ƛ N) · V —→ N [ V ] -- naturals ξ-suc : ∀ {Γ} {M M′ : Γ ⊢ `ℕ} → M —→ M′ ----------------- → `suc M —→ `suc M′ ξ-case : ∀ {Γ A} {L L′ : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} → L —→ L′ ------------------------- → case L M N —→ case L′ M N β-zero : ∀ {Γ A} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} ------------------- → case `zero M N —→ M β-suc : ∀ {Γ A} {V : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} → Value V ---------------------------- → case (`suc V) M N —→ N [ V ] -- fixpoint β-μ : ∀ {Γ A} {N : Γ , A ⊢ A} ---------------- → μ N —→ N [ μ N ] -- primitive numbers ξ-*₁ : ∀ {Γ} {L L′ M : Γ ⊢ Nat} → L —→ L′ ----------------- → L `* M —→ L′ `* M ξ-*₂ : ∀ {Γ} {V M M′ : Γ ⊢ Nat} → Value V → M —→ M′ ----------------- → V `* M —→ V `* M′ δ-* : ∀ {Γ c d} --------------------------------- → con {Γ} c `* con d —→ con (c * d) -- let ξ-let : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ , A ⊢ B} → M —→ M′ --------------------- → `let M N —→ `let M′ N β-let : ∀ {Γ A B} {V : Γ ⊢ A} {N : Γ , A ⊢ B} → Value V ------------------- → `let V N —→ N [ V ] -- products ξ-⟨,⟩₁ : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ ⊢ B} → M —→ M′ ------------------------- → `⟨ M , N ⟩ —→ `⟨ M′ , N ⟩ ξ-⟨,⟩₂ : ∀ {Γ A B} {V : Γ ⊢ A} {N N′ : Γ ⊢ B} → Value V → N —→ N′ ------------------------- → `⟨ V , N ⟩ —→ `⟨ V , N′ ⟩ ξ-proj₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B} → L —→ L′ --------------------- → `proj₁ L —→ `proj₁ L′ ξ-proj₂ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B} → L —→ L′ --------------------- → `proj₂ L —→ `proj₂ L′ β-proj₁ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------------- → `proj₁ `⟨ V , W ⟩ —→ V β-proj₂ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------------- → `proj₂ `⟨ V , W ⟩ —→ W -- alternative formulation of products ξ-case× : ∀ {Γ A B C} {L L′ : Γ ⊢ A `× B} {M : Γ , A , B ⊢ C} → L —→ L′ ----------------------- → case× L M —→ case× L′ M β-case× : ∀ {Γ A B C} {V : Γ ⊢ A} {W : Γ ⊢ B} {M : Γ , A , B ⊢ C} → Value V → Value W ---------------------------------- → case× `⟨ V , W ⟩ M —→ M [ V ][ W ]
Reflexive and transitive closure
infix 2 _—↠_ infix 1 begin_ infixr 2 _—→⟨_⟩_ infix 3 _∎ data _—↠_ {Γ A} : (Γ ⊢ A) → (Γ ⊢ A) → Set where _∎ : (M : Γ ⊢ A) ------ → M —↠ M step—→ : (L : Γ ⊢ A) {M N : Γ ⊢ A} → M —↠ N → L —→ M ------ → L —↠ N pattern _—→⟨_⟩_ L L—→M M—↠N = step—→ L M—↠N L—→M begin_ : ∀ {Γ A} {M N : Γ ⊢ A} → M —↠ N ------ → M —↠ N begin M—↠N = M—↠N
Values do not reduce
V¬—→ : ∀ {Γ A} {M N : Γ ⊢ A} → Value M ---------- → ¬ (M —→ N) V¬—→ V-ƛ () V¬—→ V-zero () V¬—→ (V-suc VM) (ξ-suc M—→M′) = V¬—→ VM M—→M′ V¬—→ V-con () V¬—→ V-⟨ VM , _ ⟩ (ξ-⟨,⟩₁ M—→M′) = V¬—→ VM M—→M′ V¬—→ V-⟨ _ , VN ⟩ (ξ-⟨,⟩₂ _ N—→N′) = V¬—→ VN N—→N′
Progress
data Progress {A} (M : ∅ ⊢ A) : Set where step : ∀ {N : ∅ ⊢ A} → M —→ N ---------- → Progress M done : Value M ---------- → Progress M progress : ∀ {A} → (M : ∅ ⊢ A) ----------- → Progress M progress (` ()) progress (ƛ N) = done V-ƛ progress (L · M) with progress L ... | step L—→L′ = step (ξ-·₁ L—→L′) ... | done V-ƛ with progress M ... | step M—→M′ = step (ξ-·₂ V-ƛ M—→M′) ... | done VM = step (β-ƛ VM) progress (`zero) = done V-zero progress (`suc M) with progress M ... | step M—→M′ = step (ξ-suc M—→M′) ... | done VM = done (V-suc VM) progress (case L M N) with progress L ... | step L—→L′ = step (ξ-case L—→L′) ... | done V-zero = step β-zero ... | done (V-suc VL) = step (β-suc VL) progress (μ N) = step β-μ progress (con n) = done V-con progress (L `* M) with progress L ... | step L—→L′ = step (ξ-*₁ L—→L′) ... | done V-con with progress M ... | step M—→M′ = step (ξ-*₂ V-con M—→M′) ... | done V-con = step δ-* progress (`let M N) with progress M ... | step M—→M′ = step (ξ-let M—→M′) ... | done VM = step (β-let VM) progress `⟨ M , N ⟩ with progress M ... | step M—→M′ = step (ξ-⟨,⟩₁ M—→M′) ... | done VM with progress N ... | step N—→N′ = step (ξ-⟨,⟩₂ VM N—→N′) ... | done VN = done (V-⟨ VM , VN ⟩) progress (`proj₁ L) with progress L ... | step L—→L′ = step (ξ-proj₁ L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-proj₁ VM VN) progress (`proj₂ L) with progress L ... | step L—→L′ = step (ξ-proj₂ L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-proj₂ VM VN) progress (case× L M) with progress L ... | step L—→L′ = step (ξ-case× L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-case× VM VN)
Evaluation
record Gas : Set where constructor gas field amount : ℕ data Finished {Γ A} (N : Γ ⊢ A) : Set where done : Value N ---------- → Finished N out-of-gas : ---------- Finished N data Steps {A} : ∅ ⊢ A → Set where steps : {L N : ∅ ⊢ A} → L —↠ N → Finished N ---------- → Steps L eval : ∀ {A} → Gas → (L : ∅ ⊢ A) ----------- → Steps L eval (gas zero) L = steps (L ∎) out-of-gas eval (gas (suc m)) L with progress L ... | done VL = steps (L ∎) (done VL) ... | step {M} L—→M with eval (gas m) M ... | steps M—↠N fin = steps (L —→⟨ L—→M ⟩ M—↠N) fin
Examples
cube : ∅ ⊢ Nat ⇒ Nat cube = ƛ (# 0 `* # 0 `* # 0) _ : cube · con 2 —↠ con 8 _ = begin cube · con 2 —→⟨ β-ƛ V-con ⟩ con 2 `* con 2 `* con 2 —→⟨ ξ-*₁ δ-* ⟩ con 4 `* con 2 —→⟨ δ-* ⟩ con 8 ∎ exp10 : ∅ ⊢ Nat ⇒ Nat exp10 = ƛ (`let (# 0 `* # 0) (`let (# 0 `* # 0) (`let (# 0 `* # 2) (# 0 `* # 0)))) _ : exp10 · con 2 —↠ con 1024 _ = begin exp10 · con 2 —→⟨ β-ƛ V-con ⟩ `let (con 2 `* con 2) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) —→⟨ ξ-let δ-* ⟩ `let (con 4) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) —→⟨ β-let V-con ⟩ `let (con 4 `* con 4) (`let (# 0 `* con 2) (# 0 `* # 0)) —→⟨ ξ-let δ-* ⟩ `let (con 16) (`let (# 0 `* con 2) (# 0 `* # 0)) —→⟨ β-let V-con ⟩ `let (con 16 `* con 2) (# 0 `* # 0) —→⟨ ξ-let δ-* ⟩ `let (con 32) (# 0 `* # 0) —→⟨ β-let V-con ⟩ con 32 `* con 32 —→⟨ δ-* ⟩ con 1024 ∎ swap× : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap× = ƛ `⟨ `proj₂ (# 0) , `proj₁ (# 0) ⟩ _ : swap× · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩ _ = begin swap× · `⟨ con 42 , `zero ⟩ —→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩ `⟨ `proj₂ `⟨ con 42 , `zero ⟩ , `proj₁ `⟨ con 42 , `zero ⟩ ⟩ —→⟨ ξ-⟨,⟩₁ (β-proj₂ V-con V-zero) ⟩ `⟨ `zero , `proj₁ `⟨ con 42 , `zero ⟩ ⟩ —→⟨ ξ-⟨,⟩₂ V-zero (β-proj₁ V-con V-zero) ⟩ `⟨ `zero , con 42 ⟩ ∎ swap×-case : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap×-case = ƛ case× (# 0) `⟨ # 0 , # 1 ⟩ _ : swap×-case · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩ _ = begin swap×-case · `⟨ con 42 , `zero ⟩ —→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩ case× `⟨ con 42 , `zero ⟩ `⟨ # 0 , # 1 ⟩ —→⟨ β-case× V-con V-zero ⟩ `⟨ `zero , con 42 ⟩ ∎
Exercise More
(recommended and practice)
Formalise the remaining constructs defined in this chapter. Make your changes in this file. Evaluate each example, applied to data as needed, to confirm it returns the expected answer:
- sums (recommended)
- unit type (practice)
- an alternative formulation of unit type (practice)
- empty type (recommended)
- lists (practice)
Please delimit any code you add as follows:
-- begin
-- end
Exercise double-subst
(stretch)
Show that a double substitution is equivalent to two single substitutions.postulate double-subst : ∀ {Γ A B C} {V : Γ ⊢ A} {W : Γ ⊢ B} {N : Γ , A , B ⊢ C} → N [ V ][ W ] ≡ (N [ rename S_ W ]) [ V ]
Note the arguments need to be swapped and W
needs to have its context adjusted via renaming in order for the right-hand side to be well typed.
Test examples
We repeat the test examples from Chapter DeBruijn, in order to make sure we have not broken anything in the process of extending our base calculus.two : ∀ {Γ} → Γ ⊢ `ℕ two = `suc `suc `zero plus : ∀ {Γ} → Γ ⊢ `ℕ ⇒ `ℕ ⇒ `ℕ plus = μ ƛ ƛ (case (# 1) (# 0) (`suc (# 3 · # 0 · # 1))) 2+2 : ∀ {Γ} → Γ ⊢ `ℕ 2+2 = plus · two · two Ch : Type → Type Ch A = (A ⇒ A) ⇒ A ⇒ A twoᶜ : ∀ {Γ A} → Γ ⊢ Ch A twoᶜ = ƛ ƛ (# 1 · (# 1 · # 0)) plusᶜ : ∀ {Γ A} → Γ ⊢ Ch A ⇒ Ch A ⇒ Ch A plusᶜ = ƛ ƛ ƛ ƛ (# 3 · # 1 · (# 2 · # 1 · # 0)) sucᶜ : ∀ {Γ} → Γ ⊢ `ℕ ⇒ `ℕ sucᶜ = ƛ `suc (# 0) 2+2ᶜ : ∀ {Γ} → Γ ⊢ `ℕ 2+2ᶜ = plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
Unicode
This chapter uses the following unicode:
σ U+03C3 GREEK SMALL LETTER SIGMA (\Gs or \sigma)
† U+2020 DAGGER (\dag)
‡ U+2021 DOUBLE DAGGER (\ddag)