
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

TYPES AND SEMANTICS FOR PROGRAMMING LANGUAGES

Saturday 1 st April 2017

00:00 to 00:00

INSTRUCTIONS TO CANDIDATES

Answer QUESTION 1 and ONE other question.

Question 1 is COMPULSORY. If both QUESTION 2 and QUESTION 3 are
answered, only QUESTION 2 will be marked.

All questions carry equal weight.

CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

Year 4 Courses

Convener: ITO-Will-Determine
External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1. THIS QUESTION IS COMPULSORY
Consider a type of trees defined as follows.

leaf
A

T ree A
branch

T ree A
T ree A
T ree A

Given a predicate P over A, we define predicates AllT and AnyT which hold when P
holds for every leaf in the tree and when P holds for some leaf in the tree, respectively.

leaf
P x

AllT P (leaf x)
branch

AllT P xt
AllT P yt

AllT P (xt branch yt)

leaf
P x

AnyT P (leaf x)
left

AnyT P xt

AnyT P (xt branch yt)
right

AnyT P yt

AnyT P (xt branch yt)

(a) Formalise the definitions above. [12 marks]
(b) Prove AllT (¬ ◦ P) xt implies ¬ (AnyT P xt), for all trees xt. [13 marks]

Page 1 of 3

2. ANSWER EITHER THIS QUESTION OR QUESTION 3
You will be provided with a definition of intrinsically-typed lambda calculus in Agda.
Consider constructs satisfying the following rules, written in extrinsically-typed style.
A computation of type Comp A returns either an error with a message msg which is
a string, or an ok value of a term M of type A. Consider constructs satisfying the
following rules:
Typing:

error
Γ ⊢ error msg ⦂ Comp A

ok
Γ ⊢ M ⦂ A

Γ ⊢ okM ⦂ Comp A

letc

Γ ⊢ M ⦂ Comp A
Γ , x ⦂ A ⊢ N ⦂ Comp B

Γ ⊢ letc x←M inN ⦂ Comp B

Values:

V-error
Value (error msg)

V-ok
Value V

Value (ok V)

Reduction:

�-ok
M ⟶M ′

okM ⟶ okM ′
�-letc

M ⟶M ′

letc x←M inN ⟶ letc x ←M ′ inN

�-error
letc x← (error msg) in t⟶ error msg

�-ok
ValueV

letc x← (ok V) inN ⟶ N [x := V]

(a) Extend the given definition to formalise the evaluation and typing rules, including
any other required definitions. [12 marks]

(b) Prove progress. You will be provided with a proof of progress for the simply-
typed lambda calculus that you may extend. [13 marks]

Please delimit any code you add as follows.

-- begin
-- end

Page 2 of 3

3. ANSWER EITHER THIS QUESTION OR QUESTION 2
Youwill be providedwith a definition of inference for extrinsically-typed lambda calcu-
lus in Agda. Consider constructs satisfying the following rules, written in extrinsically-
typed style that support bidirectional inference.
Typing:

tt
Γ ⊢ tt ↓ ⊤

case⊤

Γ ⊢ L ↑ ⊤
Γ ⊢ M ↓ A

Γ ⊢ case⊤ L [tt⇒M] ↓ A

(a) Extend the given definition to formalise the typing rules, and update the definition
of equality on types. [10 marks]

(b) Extend the code to support type inference for the new features. [15 marks]

Please delimit any code you add as follows.

-- begin
-- end

Page 3 of 3

